Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358377

RESUMO

BACKGROUND: The prevalence of NAFLD is rapidly increasing. NAFLD can progress to NASH, fibrosis, cirrhosis, and HCC, which will soon become the main causes of liver transplantation. To date, no effective drug for NASH has been approved by the Food and Drug Administration. This is partly due to the lack of reliable human in vitro models. Here, we present a novel human liver spheroid model that can be used to study the mechanisms underlying liver fibrosis formation and degradation. METHODS AND RESULTS: Such spheroids, which contain hepatocytes, stellate cells, KC, and LSECs, spontaneously develop fibrosis that is exacerbated by treatment with free fatty acids. Conditioned medium from activated LSECs caused similar activation of fibrosis in spheroids containing primary human hepatocyte and NPCs, indicating the action of soluble mediators from the LSECs. Spheroids containing LSECs treated with free fatty acids produced tissue inhibitor of metalloproteinases inhibitor 1, a matrix metalloproteinases inhibitor important for fibrosis progression. Tissue inhibitor of metalloproteinases inhibitor 1 knockdown using siRNA led to a reduction in collagen and procollagen accumulation, which could be partially rescued using a potent matrix metalloproteinases inhibitor. Interestingly, tissue inhibitor of metalloproteinases inhibitor 1 was found to be expressed at higher levels, specifically in a subtype of endothelial cells in the pericentral region of human fibrotic livers, than in control livers. CONCLUSION: Potential anti-NASH drugs and compounds were evaluated for their efficacy in reducing collagen accumulation, and we found differences in specificity between spheroids with and without LSECs. This new human NASH model may reveal novel mechanisms for the regulation of liver fibrosis and provide a more appropriate model for screening drugs against NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Estados Unidos , Humanos , Células Endoteliais , Ácidos Graxos não Esterificados , Cirrose Hepática , Pró-Colágeno , Inibidores Teciduais de Metaloproteinases , Metaloproteinases da Matriz , Inibidor Tecidual de Metaloproteinase-1/genética
2.
Neuropathol Appl Neurobiol ; 49(1): e12867, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36536486

RESUMO

AIMS: CYP2C19 transgenic mouse expresses the human CYP2C19 gene in the liver and developing brain, and it exhibits altered neurodevelopment associated with impairments in emotionality and locomotion. Because the validation of new animal models is essential for the understanding of the aetiology and pathophysiology of movement disorders, the objective was to characterise motoric phenotype in CYP2C19 transgenic mice and to investigate its validity as a new animal model of ataxia. METHODS: The rotarod, paw-print and beam-walking tests were utilised to characterise the motoric phenotype. The volumes of 20 brain regions in CYP2C19 transgenic and wild-type mice were quantified by 9.4T gadolinium-enhanced post-mortem structural neuroimaging. Antioxidative enzymatic activity was quantified biochemically. Dopaminergic alterations were characterised by chromatographic quantification of concentrations of dopamine and its metabolites and by subsequent immunohistochemical analyses. The beam-walking test was repeated after the treatment with dopamine receptor antagonists ecopipam and raclopride. RESULTS: CYP2C19 transgenic mice exhibit abnormal, unilateral ataxia-like gait, clasping reflex and 5.6-fold more paw-slips in the beam-walking test; the motoric phenotype was more pronounced in youth. Transgenic mice exhibited a profound reduction of 12% in cerebellar volume and a moderate reduction of 4% in hippocampal volume; both regions exhibited an increased antioxidative enzyme activity. CYP2C19 mice were hyperdopaminergic; however, the motoric impairment was not ameliorated by dopamine receptor antagonists, and there was no alteration in the number of midbrain dopaminergic neurons in CYP2C19 mice. CONCLUSIONS: Humanised CYP2C19 transgenic mice exhibit altered gait and functional motoric impairments; this phenotype is likely caused by an aberrant cerebellar development.


Assuntos
Doenças Cerebelares , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Adolescente , Camundongos Transgênicos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Ataxia/metabolismo , Ataxia/patologia , Cerebelo/patologia , Doenças Cerebelares/patologia , Doenças Neurodegenerativas/patologia , Atrofia/patologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...